
Robotics II
July 15, 2013

Consider a planar 3R robot on a horizontal plane, having link lengths `1, `2, and `3. Figure 1
shows three different situations. In each of them, the robot is subject to:
• a single unknown external force F i =

(
Fxi Fyi

)T , of arbitrary direction and intensity
in the plane, applied to a point of the first, second, or third link, at a (possibly, unknown)
distance `ci from the link i base (with i = 1, 2, 3, respectively);

• an associated known (measured, or computed by a controller) joint torque τ =
(
τ1 τ2 τ3

)T
that keeps the robot in a static equilibrium q =

(
q1 q2 q3

)T , as measured by encoders.

Figure 1: A planar 3R robot subject to an unknown external force F i applied to the first (i = 1,
left), second (i = 2, center), or third link (i = 3, right)

Analyze for each of the above three generic situations if and how:
1. one can identify which link is subject to the external force;

2. knowing the distance `ci of the application point along the link (which can be obtained
by means of an external camera, a Kinect, or using distributed tactile sensing), one can
completely estimate F i, e.g., its direction and intensity;

3. one can estimate F i and the distance `c,i of the application point along the link, without
any external/extra sensing;

4. the presence of gravity (with the robot being in a vertical plane) makes a difference for the
above problems.

Verify the analysis for a 3R robot in a horizontal plane, with the numerical data

`1 = 0.5 [m], `2 = 0.3 [m], `3 = 0.2 [m], q =
(

45◦ −90◦ 60◦
)T (in D-H convention),

and for the following two cases of known equilibrium joint torques:

a) τ a =
(
−0.25 −0.75 0

)T [Nm], b) τ b =
(

0.7585 −0.2995 0.2000
)T [Nm].

Estimate the applied external force in case a) and b), respectively. Following the outcome of your
analysis, try to work without any a priori knowledge of the application point of the external force.
If a case turns out to be under-determined, choose the application point at the link midpoint.

[120 minutes; open books]
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Solution
July 15, 2013

In the absence of gravity, the joint torque that balances at an equilibrium q a force applied to a
point along the robot structure having position pc = f c(q) is given by

τ = −
(
∂f c

∂q

)T

F = −JT
c (q)F .

Planar forces F ∈ R2 are expressed here in the base frame (x0,y0). From the position of the
contact point pc ∈ R2, we can derive the contact Jacobian associated to a force F i acting on link
i at a distance `ci from its base, for i = 1, 2, 3 (three cases).

For a force F 1 acting on the first link, with `c1 ∈ (0, `1]:

Jc1 =
(
−`c1 sin q1 0 0
`c1 cos q1 0 0

)
.

For a force F 2 acting on the second link, with `c2 ∈ (0, `2]:

Jc2 =
(
−`1 sin q1 − `c2 sin(q1 + q2) −`c2 sin(q1 + q2) 0
`1 cos q1 + `c2 cos(q1 + q2) `c2 cos(q1 + q2) 0

)
.

For a force F 3 acting on the third link, with `c3 ∈ (0, `3]:

Jc3 =
(
−`1s1 − `2s12 − `c3s123 −`2s12 − `c3s123 −`c3s123
`1c1 + `2c12 + `c3c123 `2c12 + `c3c123 `c3c123

)
,

where we used the usual compact notation, e.g., s123 = sin(q1 + q2 + q3).

In order to have a better insight on the contact forces that are felt at the robot joints, it is
convenient to express these forces in the local frame attached to each link, i.e., according to their
tangential and normal components w.r.t. the geometric link. Since we are dealing with a purely
planar problem, the planar rotation matrices of interest are

0R1 =
(
c1 −s1
s1 c1

)
, 0R2 =

(
c12 −s12
s12 c12

)
, 0R3 =

(
c123 −s123
s123 c123

)
.

we have

F i = 0Ri
iF i ⇒ τ i = −JT

ci(q)F i = −JT
ci(q)0Ri

iF i = −
(

0RT
i Jci(q)

)T
iF i = −iJT

ci(q) iF i.

Once expressed in the local link frame, the contact Jacobians iJci(q) for the considered cases are:

1Jc1 = 0RT
1 Jc1(q) =

(
0 0 0
`c1 0 0

)
, always of rank 1;

2Jc2 = 0RT
2 Jc2(q) =

(
`1s2 0 0

`1c2 + `c2 `c2 0

)
, of rank 2 if and only if |s2| 6= 0;

3Jc3 = 0RT
3 Jc3(q) =

(
`1s23 + `2s3 `2s3 0

`1c23 + `2c3 + `c3 `2c3 + `c3 `c3

)
, of rank 2 if and only if s22 + s23 6= 0.

Therefore, we have the following explicit equations at steady state.
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For a force 1F 1 =
(

1F1x
1F1y

)T acting on the first link:

τ1,1 = −`c1 1F1y,

τ1,2 = 0,

τ1,3 = 0.

(1)

For a force 2F 2 =
(

2F2x
2F2y

)T acting on the second link:

τ2,1 = −`1s22F2x − (`1c2 + `c2) 2F2y = −`1
(
s2

2F2x + c2
2F2y

)
+ τ2,2,

τ2,2 = −`c2 2F2y,

τ2,3 = 0.

(2)

For a force 3F 3 =
(

3F3x
3F3y

)T acting on the third link:

τ3,1 = − (`1s23 + `2s3) 3F3x − (`1c23 + `2c3 + `c3) 3F3y

= −`1
(
s23

3F3x + c23
3F3y

)
+ τ3,2,

τ3,2 = −
(
`2s3

3F3x + (`3c3 + `c3) 3F3y

)
= −`2

(
s3

3F3x + c3
3F3y

)
+ τ3,3,

τ3,3 = −`c3 3F3y.

(3)

Inner recursions from the outer to the inner joints have been used to simplify the expressions.
Based on the above, the following series of observations can be made.

1. Identification of which link is subject to the contact force is made using the components of
the joint torque vector τ i, based on the following cascaded (generic) rule:

τi,3 = τi,2 = 0 ⇒ i = 1, link 1 is involved

τi,3 = 0, τi,2 6= 0 ⇒ i = 2, link 2 is involved

else ⇒ i = 3, link 3 is involved.

Note that, if a force is applied at the base of link i (corresponding to the exact location of
joint i), it is then attributed to the tip of the previous link i − 1 (with `c,i−1 = `i−1), since
`ci 6= 0 by definition.

2. Knowledge of the joint torque vector τ i at an equilibrium configuration q is obtained in one
of the following alternative, but equivalent ways (however, note the signs!):

• from the static measurement by a joint torque sensor, τm = −JT
c (q)F c = τ i;

• as the steady-state value of the residual vector r generated in response to a collision
with a constant contact force F c, r = JT

c (q)F c = −τ i;

• as the steady-state output of a feedback controller, e.g., with a regulation law designed
for a desired position qd and including a proportional term, τ c = KP (qd − q) =
−JT

c (q)F c = τ i.

3. Since the rank of matrix Jc1 (and of 1Jc1) is always one, we can never estimate completely
a contact force acting on link 1. As intuition suggests, from eqs. (1) we can only estimate
the force component 1F1y that is normal to the link, once we know its application point, as

1F1y = −τ1,1

`c1
,
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whereas 1F1x can be arbitrary and is balanced by the internal reaction force of the link
structure.

4. When matrix Jc2 (2Jc2) has full rank, by using eqs. (2) we can estimate completely the
contact force F 2 acting on link 2, provided that `c2 is known, as

2F2y = −τ2,2

`c2
, 2F2x = − 1

`1s2

(
τ2,1 − (`1c2 + `c2)

τ2,2

`c2

)
.

To recover the expression of the contact force in the base frame, we use F 2 = 0R2
2F 2.

5. When the second link is aligned with the first one (s2 = 0), Jc2 loses rank and we recover a
similar situation to that in item 3, namely 2F2x cannot be estimated. However, in this case
the two data τ2,1 and τ2,2 can be used to estimate both 2F2y and `c2 as

2F2y = ± τ2,1 − τ2,2

`1
, `c2 = − τ2,2

2F2y
,

where the sign ‘−’ corresponds to q2 = 0 and the sign ‘+’ to q2 = π.

6. When matrix 3Jc3 (or Jc3) has full rank and `c3 is known, by using eqs. (3) we can estimate
completely the contact force F 3 acting on link 3 as

3F3y = −τ3,3

`c3
,

3F3x = − 1
`2s3

(
τ3,2 − (`2c3 + `c3)

τ3,3

`c3

)
, if s3 6= 0

or 3F3x = − 1
`2s23

(
τ3,1 − τ3,2 − `1c23

τ3,3

`c3

)
, if s3 = 0, but s23 = ± s2 6= 0.

To recover the expression of the contact force in the base frame, we use F 3 = 0R3
3F 3. When

the robot arm is fully stretched or folded, we can proceed as in item 5 and identify from τ 3

both 3F3y and `c3, but not 3F3x.

7. One interesting feature of having three independent information from the joint torque vector
in case of contact on the third link, is that the estimation of the force F 3 can be performed
even without knowing `c3. In fact, the value `c3 has disappeared in the recursive expressions
of the first two equations in (3). Therefore, we can evaluate

3F 3 =

(
3F3x

3F3y

)
= −

(
`1s23 `1c23

`2s3 `2c3

)−1(
τ3,1 − τ3,2

τ3,2 − τ3,3

)
,

provided that s2 6= 0 holds (for the invertibility of the coefficient matrix), and then complete
the analysis by using the third equation in (3)

`c3 = − τ3,3

3F3y
.

8. The results in the above items 3, 4, and 6 can all be obtained by using the pseudoinverse of
the associated contact Jacobian, independently from its rank,

F̂ i = −
(
JT

ci(q)
)#

τ i or iF̂ i = −
(

iJT
ci(q)

)#

τ i, for i = 1, 2, 3.
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The ‘hat’ has been added to express the fact that the estimation may not be complete (e.g.,
in the contact on the first link, or in the other two cases when the contact Jacobian loses
rank). On the other hand, the estimation result in item 7 is obtained by direct inspection of
the equations.

9. The presence of a gravity term g(q) in the robot dynamics does not change the picture
substantially. The main difference is that the joint torque τ should be replaced in all above
formulas by τ − g(q), since at the equilibrium

g(q) = τ + JT
c (q)F .

For the two assigned numerical problems, we have the following results. We note first that the
given robot configuration q̄ =

(
π/4 −π/2 π/3

)T [rad] does not lead to singularity problems.

a) Contact occurs on the second link (see item 1) and eqs. (2) apply. Since knowledge of the
application point is necessary in this case, we set `c2 = `2/2 = 0.15 [m]. The contact Jacobian
is then

Jc2(q̄) =

(
−0.2475 0.1061 0
0.4596 0.1061 0

)
.

Thus,

F 2 = −
(
JT

c2(q̄)
)#

τ a =

(
4.242
2.8284

)
, 2F 2 = 0RT

2 (q̄)F 2 =

(
1
5

)
, both expressed in [N].

b) Contact occurs on the third link and eqs. (3) apply. Solving for contact force and distance
of its application point from the link base yields

F 3 =

(
2.6736
−0.3189

)
, 3F 3 =

(
2.5
−1

)
, both expressed in [N]; `c3 = 0.2 [m] (i.e., at the tip).

Using the computed `c3, the resulting contact Jacobian is then

Jc3(q̄) =

(
0.1932 0.1604 −0.0518
0.7589 0.4053 0.1932

)
.

Finally, one can verify that F 3 = −
(
JT

c3(q̄)
)#

τ b.

∗ ∗ ∗ ∗ ∗
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